Playing with ionic liquid mixtures to design engineered CO2 separation membranes.

نویسندگان

  • Liliana C Tomé
  • Catarina Florindo
  • Carmen S R Freire
  • Luís Paulo N Rebelo
  • Isabel M Marrucho
چکیده

Ionic liquids have been explored as attractive alternative media for CO2 separation not only due to their low volatility but also due to their highly tuneable nature. Aiming at designing highly efficient liquid phases for flue gas separation and natural gas purification, this work focuses on the use of binary ionic liquid mixtures containing sulfate and/or cyano-functionalized anions. Several mixtures were prepared and their gas transport properties through supported ionic liquid membranes (SILMs) were investigated. The thermophysical properties of these mixtures, namely viscosity and density (data presented and discussed in ESI), were also measured so that trends between transport properties and thermophysical properties could be evaluated. The results obtained indicate that depending on the anions mixed, membranes with fine-tuned gas permeabilities, diffusivities and solubilities can be obtained. Additionally, SILMs prepared with these ionic liquid mixtures are on the upper bound of the CO2/N2 separation, or even may surpass it, indicating their potential for separating CO2 in low-pressure post-combustion processes. Overall, the use of ionic liquid mixtures combining the most selective anions with the least viscous anions is a highly promising strategy to design advanced engineered liquid phases for CO2 separation membranes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selective Mass Transport of CO2 Containing Mixtures through Zeolite Membranes

In this work, the main aspects regarding the permeation of mixtures containing CO2 and permanent gases such as H2 , N2 and CH4 through zeolite membranes have been investigated, focusing on the description of the mass transport mechanisms taking place inside the pores. First, a brief overview about the performance of the main zeolite membranes used in gas separation (e.g. DDR, CHA, AEI, FAU, etc...

متن کامل

Mathematical Modeling of Carbon Dioxide Removal from the CO2/CH4 Gas Mixture Using Amines and Blend of Amines in Polypropylene: A Comparison between Hollow Fiber Membrane Contactor and Other Membranes

In this work, a mathematical model is established to describe the removal of CO2 from gaseous mixtures including CH4 and CO2 in a polypropylene hollow fiber membrane contactor in the presence of conventional absorbents such as monoethanolamine (MEA), methyldiethanolamine (MDEA), and a blend of them. Modeling was performed in axial and radial directions under the fully-wet condition for counterc...

متن کامل

Novel inorganic membranes for gas separation

A literature survey was performed to evaluate the state-of-the-art membrane systems for CO2/CH4 separation which is critical in the natural gas industry. The systems that were reviewed included zeolite, carbon, polymeric, mixed matrix, amorphous silica, and supported ionic liquid membranes. Supported ionic liquid CO2/CH4 selective membranes were synthesized in our laboratory by applying room te...

متن کامل

Synthesis of PIL membranes for CO2 separation

Carbon dioxide (CO2) can be commonly found in natural gas streams, biogas, flue gas and product of coal gasification[1]. The presence of CO2 and other acid gases reduce the thermal efficiency and make the gas streams become acidic and corrosive, which in turn reduces the possibilities of gas compression and the transport within the transportation systems[2]. Membrane separation is a promising t...

متن کامل

Supported Ionic Liquid Membranes and Ion-Jelly® Membranes with [BMIM][DCA]: Comparison of Its Performance for CO2 Separation

In this work, a supported ionic liquid membrane (SILM) was prepared by impregnating a PVDF membrane with 1-butyl-3-methylimidazolium dicyanamide ([BMIM][DCA]) ionic liquid. This membrane was tested for its permeability to pure gases (CO2, N2 and O2) and ideal selectivities were calculated. The SILM performance was also compared to that of Ion-Jelly® membranes, a new type of gelled membranes dev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 16 32  شماره 

صفحات  -

تاریخ انتشار 2014